High-Intensity Statins Guideline Expectations and Clinical Application

There have been major advances in the understanding and management of atherosclerotic cardiovascular disease (ASCVD). Central to these was the discovery of the role of cholesterol-containing lipoprotein particles in the atherosclerotic process and the development of lipid-lowering agents, particularly statins. Despite substantial and consistent evidence to support a causal link between statin use and prevention of ASCVD events, there is still debate regarding the appropriate administration of statins, particularly with regard to primary prevention.

Reference: JAMA. 2017;317(24):2543-2544.

Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study

Objectives To develop and validate updated QRISK3 prediction algorithms to estimate the 10 year risk of cardiovascular disease in women and men accounting for potential new risk factors.

Design Prospective open cohort study.

Setting General practices in England providing data for the QResearch database.

Participants 1309 QResearch general practices in England: 981 practices were used to develop the scores and a separate set of 328 practices were used to validate the scores. 7.89 million patients aged 25-84 years were in the derivation cohort and 2.67 million patients in the validation cohort. Patients were free of cardiovascular disease and not prescribed statins at baseline.

Methods Cox proportional hazards models in the derivation cohort to derive separate risk equations in men and women for evaluation at 10 years. Risk factors considered included those already in QRISK2 (age, ethnicity, deprivation, systolic blood pressure, body mass index, total cholesterol: high density lipoprotein cholesterol ratio, smoking, family history of coronary heart disease in a first degree relative aged less than 60 years, type 1 diabetes, type 2 diabetes, treated hypertension, rheumatoid arthritis, atrial fibrillation, chronic kidney disease (stage 4 or 5)) and new risk factors (chronic kidney disease (stage 3, 4, or 5), a measure of systolic blood pressure variability (standard deviation of repeated measures), migraine, corticosteroids, systemic lupus erythematosus (SLE), atypical antipsychotics, severe mental illness, and HIV/AIDs). We also considered erectile dysfunction diagnosis or treatment in men. Measures of calibration and discrimination were determined in the validation cohort for men and women separately and for individual subgroups by age group, ethnicity, and baseline disease status.

Main outcome measures Incident cardiovascular disease recorded on any of the following three linked data sources: general practice, mortality, or hospital admission records.

Results 363 565 incident cases of cardiovascular disease were identified in the derivation cohort during follow-up arising from 50.8 million person years of observation. All new risk factors considered met the model inclusion criteria except for HIV/AIDS, which was not statistically significant. The models had good calibration and high levels of explained variation and discrimination. In women, the algorithm explained 59.6% of the variation in time to diagnosis of cardiovascular disease (R2, with higher values indicating more variation), and the D statistic was 2.48 and Harrell’s C statistic was 0.88 (both measures of discrimination, with higher values indicating better discrimination). The corresponding values for men were 54.8%, 2.26, and 0.86. Overall performance of the updated QRISK3 algorithms was similar to the QRISK2 algorithms.

Conclusion Updated QRISK3 risk prediction models were developed and validated. The inclusion of additional clinical variables in QRISK3 (chronic kidney disease, a measure of systolic blood pressure variability (standard deviation of repeated measures), migraine, corticosteroids, SLE, atypical antipsychotics, severe mental illness, and erectile dysfunction) can help enable doctors to identify those at most risk of heart disease and stroke.

Reference: BMJ 2017;357:j2099

Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease

BACKGROUND

Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin–kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain.

METHODS

We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years.

RESULTS

At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%).

CONCLUSIONS

In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets. (Funded by Amgen; FOURIER ClinicalTrials.gov number, NCT01764633.)

Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol

BACKGROUND

In a previous study, a single injection of inclisiran, a chemically synthesized small interfering RNA designed to target PCSK9 messenger RNA, was found to produce sustained reductions in low-density lipoprotein (LDL) cholesterol levels over the course of 84 days in healthy volunteers.

METHODS

We conducted a phase 2, multicenter, double-blind, placebo-controlled, multiple-ascending-dose trial of inclisiran administered as a subcutaneous injection in patients at high risk for cardiovascular disease who had elevated LDL cholesterol levels. Patients were randomly assigned to receive a single dose of placebo or 200, 300, or 500 mg of inclisiran or two doses (at days 1 and 90) of placebo or 100, 200, or 300 mg of inclisiran. The primary end point was the change from baseline in LDL cholesterol level at 180 days. Safety data were available through day 210, and data on LDL cholesterol and proprotein convertase subtilisin–kexin type 9 (PCSK9) levels were available through day 240.

RESULTS

A total of 501 patients underwent randomization. Patients who received inclisiran had dose-dependent reductions in PCSK9 and LDL cholesterol levels. At day 180, the least-squares mean reductions in LDL cholesterol levels were 27.9 to 41.9% after a single dose of inclisiran and 35.5 to 52.6% after two doses (P<0.001 for all comparisons vs. placebo). The two-dose 300-mg inclisiran regimen produced the greatest reduction in LDL cholesterol levels: 48% of the patients who received the regimen had an LDL cholesterol level below 50 mg per deciliter (1.3 mmol per liter) at day 180. At day 240, PCSK9 and LDL cholesterol levels remained significantly lower than at baseline in association with all inclisiran regimens. Serious adverse events occurred in 11% of the patients who received inclisiran and in 8% of the patients who received placebo. Injection-site reactions occurred in 5% of the patients who received injections of inclisiran.

CONCLUSIONS

In our trial, inclisiran was found to lower PCSK9 and LDL cholesterol levels among patients at high cardiovascular risk who had elevated LDL cholesterol levels. (Funded by the Medicines Company; ORION-1 ClinicalTrials.gov number, NCT02597127.)

Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes

BACKGROUND

Long-term trends in excess risk of death and cardiovascular outcomes have not been extensively studied in persons with type 1 diabetes or type 2 diabetes.

METHODS

We included patients registered in the Swedish National Diabetes Register from 1998 through 2012 and followed them through 2014. Trends in deaths and cardiovascular events were estimated with Cox regression and standardized incidence rates. For each patient, controls who were matched for age, sex, and county were randomly selected from the general population.

RESULTS

Among patients with type 1 diabetes, absolute changes during the study period in the incidence rates of sentinel outcomes per 10,000 person-years were as follows: death from any cause, −31.4 (95% confidence interval [CI], −56.1 to −6.7); death from cardiovascular disease, −26.0 (95% CI, −42.6 to −9.4); death from coronary heart disease, −21.7 (95% CI, −37.1 to −6.4); and hospitalization for cardiovascular disease, −45.7 (95% CI, −71.4 to −20.1). Absolute changes per 10,000 person-years among patients with type 2 diabetes were as follows: death from any cause, −69.6 (95% CI, −95.9 to −43.2); death from cardiovascular disease, −110.0 (95% CI, −128.9 to −91.1); death from coronary heart disease, −91.9 (95% CI, −108.9 to −75.0); and hospitalization for cardiovascular disease, −203.6 (95% CI, −230.9 to −176.3). Patients with type 1 diabetes had roughly 40% greater reduction in cardiovascular outcomes than controls, and patients with type 2 diabetes had roughly 20% greater reduction than controls. Reductions in fatal outcomes were similar in patients with type 1 diabetes and controls, whereas patients with type 2 diabetes had smaller reductions in fatal outcomes than controls.

CONCLUSIONS

In Sweden from 1998 through 2014, mortality and the incidence of cardiovascular outcomes declined substantially among persons with diabetes, although fatal outcomes declined less among those with type 2 diabetes than among controls. (Funded by the Swedish Association of Local Authorities and Regions and others.)

Prognosis of undiagnosed chest pain: linked electronic health record cohort study

Objective To ascertain long term cardiovascular outcomes in patients whose chest pain remained undiagnosed six months after first presentation.

Design Cohort study.

Setting UK electronic health record database (CALIBER) linking primary care, secondary care, coronary registry, and death registry information.

Participants 172 180 adults aged ≥18 from 223 general practices presenting with a first episode of recorded chest pain, classified from medical records as diagnosed (non-coronary condition or angina) or undiagnosed (cause unattributed) at first consultation between 2002 and 2009 and with no previous record of cardiovascular disease.

Main outcome measures Fatal or non-fatal cardiovascular events over 5.5 years’ follow-up. Adjustments were made for age, sex, deprivation, body mass index, smoking status, year of index presentation, and previous records of diabetes or hypertension or previous prescriptions for lipid lowering drugs.

Results At the index presentation, 72.4% of patients (124 688) did not have a cause attributed for their chest pain; 118 687 (95.2%) of these did not receive any type of cardiovascular diagnosis over the next six months. Only a minority of patients in all three groups (non-coronary 2.0% (769 of 39 232); unattributed 11.7% (14 582 of 124 688); angina 31.5% (2606 of 8260)) had a recorded cardiac diagnostic investigation in the first six months after presentation. The long term incidence of cardiovascular events was higher in those whose chest pain remained unattributed after six months (5126 of 109 628; 4.7%) compared with patients with an initial diagnosis of non-coronary pain (1073 of 36 097; 3.0%) (adjusted hazard ratios for 0.5-1 year after presentation: 1.95, 95% confidence interval 1.66 to 2.31; for 1-3 years: 1.35, 1.23 to 1.48); for 3-5.5 years: 1.21, 1.08 to 1.37). Owing to the larger number of patients in the unattributed group, there were more excess myocardial infarctions in the long term in this group (214 more than expected based on the rate in the non-coronary group) than in the angina group (132 more than expected). Patients who had cardiac diagnostic investigations in the first six months had a higher long term risk of cardiovascular events, regardless of the initial chest pain label. Incidence of unattributed chest pain and angina decreased between 2002 (124 per 10 000 person years and 13 per 10 000 person years, respectively) and 2009 (107 per 10 000 person years and 5 per 10 000 person years, respectively), but the incidence of chest pain attributed to a non-coronary cause remained stable (37-40 per 10 000 person years). Risk of cardiovascular events did not change over time.

Conclusions Most patients with first onset chest pain do not have a diagnosis recorded at presentation or in the subsequent six months, including those who undergo cardiac investigations. These patients have an increased risk of cardiovascular events for at least five years. Efforts to better assess and reduce the cardiovascular risk of such patients are warranted.

BMJ 2017;357:j1194

Cardiovascular Safety of Celecoxib, Naproxen, or Ibuprofen for Arthritis

BACKGROUND

The cardiovascular safety of celecoxib, as compared with nonselective nonsteroidal antiinflammatory drugs (NSAIDs), remains uncertain.

METHODS

Patients who required NSAIDs for osteoarthritis or rheumatoid arthritis and were at increased cardiovascular risk were randomly assigned to receive celecoxib, ibuprofen, or naproxen. The goal of the trial was to assess the noninferiority of celecoxib with regard to the primary composite outcome of cardiovascular death (including hemorrhagic death), nonfatal myocardial infarction, or nonfatal stroke. Noninferiority required a hazard ratio of 1.12 or lower, as well as an upper 97.5% confidence limit of 1.33 or lower in the intention-to-treat population and of 1.40 or lower in the on-treatment population. Gastrointestinal and renal outcomes were also adjudicated.

RESULTS

A total of 24,081 patients were randomly assigned to the celecoxib group (mean [±SD] daily dose, 209±37 mg), the naproxen group (852±103 mg), or the ibuprofen group (2045±246 mg) for a mean treatment duration of 20.3±16.0 months and a mean follow-up period of 34.1±13.4 months. During the trial, 68.8% of the patients stopped taking the study drug, and 27.4% of the patients discontinued follow-up. In the intention-to-treat analyses, a primary outcome event occurred in 188 patients in the celecoxib group (2.3%), 201 patients in the naproxen group (2.5%), and 218 patients in the ibuprofen group (2.7%) (hazard ratio for celecoxib vs. naproxen, 0.93; 95% confidence interval [CI], 0.76 to 1.13; hazard ratio for celecoxib vs. ibuprofen, 0.85; 95% CI, 0.70 to 1.04; P<0.001 for noninferiority in both comparisons). In the on-treatment analysis, a primary outcome event occurred in 134 patients in the celecoxib group (1.7%), 144 patients in the naproxen group (1.8%), and 155 patients in the ibuprofen group (1.9%) (hazard ratio for celecoxib vs. naproxen, 0.90; 95% CI, 0.71 to 1.15; hazard ratio for celecoxib vs. ibuprofen, 0.81; 95% CI, 0.65 to 1.02; P<0.001 for noninferiority in both comparisons). The risk of gastrointestinal events was significantly lower with celecoxib than with naproxen (P=0.01) or ibuprofen (P=0.002); the risk of renal events was significantly lower with celecoxib than with ibuprofen (P=0.004) but was not significantly lower with celecoxib than with naproxen (P=0.19).

CONCLUSIONS

At moderate doses, celecoxib was found to be noninferior to ibuprofen or naproxen with regard to cardiovascular safety. (Funded by Pfizer; ClinicalTrials.gov number, NCT00346216.)

N Engl J Med 2016; :2519-2529December 29, 2016