Effect of Oral Prednisolone on Symptom Duration and Severity in Nonasthmatic Adults With Acute Lower Respiratory Tract Infection A Randomized Clinical Trial

Question  Does a moderate dose of oral corticosteroid reduce the duration or severity of acute lower respiratory tract infection in adults without asthma presenting to primary care?

Findings  In this randomized trial of 401 adults with symptoms of acute lower respiratory tract infection, treatment with oral prednisolone, 40 mg/d for 5 days, compared with placebo did not significantly reduce the median duration of moderately bad or worse cough (5 days in each group) or the mean severity of symptoms between days 2 and 4 (1.99 vs 2.16 points out of 6).

Meaning  These findings do not support the use of oral steroids for the treatment of acute lower respiratory tract infection in the absence of asthma.

Reference: JAMA. 2017;318(8):721-730.

Advertisements

Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study

Objectives To describe neurodevelopmental outcomes at 2 years corrected age for children born alive at 22-26, 27-31, and 32-34 weeks’ gestation in 2011, and to evaluate changes since 1997.

Design Population based cohort studies, EPIPAGE and EPIPAGE-2.

Setting France.

Participants 5567 neonates born alive in 2011 at 22-34 completed weeks’ gestation, with 4199 survivors at 2 years corrected age included in follow-up. Comparison of outcomes reported for 3334 (1997) and 2418 (2011) neonates born alive in the nine regions participating in both studies.

Main outcome measures Survival; cerebral palsy (2000 European consensus definition); scores below threshold on the neurodevelopmental Ages and Stages Questionnaire (ASQ; at least one of five domains below threshold) if completed between 22 and 26 months corrected age, in children without cerebral palsy, blindness, or deafness; and survival without severe or moderate neuromotor or sensory disabilities (cerebral palsy with Gross Motor Function Classification System levels 2-5, unilateral or bilateral blindness or deafness). Results are given as percentage of outcome measures with 95% confidence intervals.

Results Among 5170 liveborn neonates with parental consent, survival at 2 years corrected age was 51.7% (95% confidence interval 48.6% to 54.7%) at 22-26 weeks’ gestation, 93.1% (92.1% to 94.0%) at 27-31 weeks’ gestation, and 98.6% (97.8% to 99.2%) at 32-34 weeks’ gestation. Only one infant born at 22-23 weeks survived. Data on cerebral palsy were available for 3599 infants (81.0% of the eligible population). The overall rate of cerebral palsy at 24-26, 27-31, and 32-34 weeks’ gestation was 6.9% (4.7% to 9.6%), 4.3% (3.5% to 5.2%), and 1.0% (0.5% to 1.9%), respectively. Responses to the ASQ were analysed for 2506 children (56.4% of the eligible population). The proportion of children with an ASQ result below threshold at 24-26, 27-31, and 32-34 weeks’ gestation were 50.2% (44.5% to 55.8%), 40.7% (38.3% to 43.2%), and 36.2% (32.4% to 40.1%), respectively. Survival without severe or moderate neuromotor or sensory disabilities among live births increased between 1997 and 2011, from 45.5% (39.2% to 51.8%) to 62.3% (57.1% to 67.5%) at 25-26 weeks’ gestation, but no change was observed at 22-24 weeks’ gestation. At 32-34 weeks’ gestation, there was a non-statistically significant increase in survival without severe or moderate neuromotor or sensory disabilities (P=0.61), but the proportion of survivors with cerebral palsy declined (P=0.01).

Conclusions In this large cohort of preterm infants, rates of survival and survival without severe or moderate neuromotor or sensory disabilities have increased during the past two decades, but these children remain at high risk of developmental delay.

Reference: BMJ 2017;358:j3448

A growth reference for mid upper arm circumference for age among school age children and adolescents, and validation for mortality: growth curve construction and longitudinal cohort study

Objectives To construct growth curves for mid-upper-arm circumference (MUAC)-for-age z score for 5-19 year olds that accord with the World Health Organization growth standards, and to evaluate their discriminatory performance for subsequent mortality.

Design Growth curve construction and longitudinal cohort study.

Setting United States and international growth data, and cohorts in Kenya, Uganda, and Zimbabwe.

Participants The Health Examination Survey (HES)/National Health and Nutrition Examination Survey (NHANES) US population datasets (age 5-25 years), which were used to construct the 2007 WHO growth reference for body mass index in this age group, were merged with an imputed dataset matching the distribution of the WHO 2006 growth standards age 2-6 years. Validation data were from 685 HIV infected children aged 5-17 years participating in the Antiretroviral Research for Watoto (ARROW) trial in Uganda and Zimbabwe; and 1741 children aged 5-13 years discharged from a rural Kenyan hospital (3.8% HIV infected). Both cohorts were followed-up for survival during one year.

Main outcome measures Concordance with WHO 2006 growth standards at age 60 months and survival during one year according to MUAC-for-age and body mass index-for-age z scores.

Results The new growth curves transitioned smoothly with WHO growth standards at age 5 years. MUAC-for-age z scores of −2 to −3 and less than−3, compared with −2 or more, was associated with hazard ratios for death within one year of 3.63 (95% confidence interval 0.90 to 14.7; P=0.07) and 11.1 (3.40 to 36.0; P<0.001), respectively, among ARROW trial participants; and 2.22 (1.01 to 4.9; P=0.04) and 5.15 (2.49 to 10.7; P<0.001), respectively, among Kenyan children after discharge from hospital. The AUCs for MUAC-for-age and body mass index-for-age z scores for discriminating subsequent mortality were 0.81 (95% confidence interval 0.70 to 0.92) and 0.75 (0.63 to 0.86) in the ARROW trial (absolute difference 0.06, 95% confidence interval −0.032 to 0.16; P=0.2) and 0.73 (0.65 to 0.80) and 0.58 (0.49 to 0.67), respectively, in Kenya (absolute difference in AUC 0.15, 0.07 to 0.23; P=0.0002).

Conclusions The MUAC-for-age z score is at least as effective as the body mass index-for-age z score for assessing mortality risks associated with undernutrition among African school aged children and adolescents. MUAC can provide simplified screening and diagnosis within nutrition and HIV programmes, and in research.

Reference: BMJ 2017;358:j3423

Liraglutide and Renal Outcomes in Type 2 Diabetes

BACKGROUND

In a randomized, controlled trial that compared liraglutide, a glucagon-like peptide 1 analogue, with placebo in patients with type 2 diabetes and high cardiovascular risk who were receiving usual care, we found that liraglutide resulted in lower risks of the primary end point (nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes) and death. However, the long-term effects of liraglutide on renal outcomes in patients with type 2 diabetes are unknown.

METHODS

We report the prespecified secondary renal outcomes of that randomized, controlled trial in which patients were assigned to receive liraglutide or placebo. The secondary renal outcome was a composite of new-onset persistent macroalbuminuria, persistent doubling of the serum creatinine level, end-stage renal disease, or death due to renal disease. The risk of renal outcomes was determined with the use of time-to-event analyses with an intention-to-treat approach. Changes in the estimated glomerular filtration rate and albuminuria were also analyzed.

RESULTS

A total of 9340 patients underwent randomization, and the median follow-up of the patients was 3.84 years. The renal outcome occurred in fewer participants in the liraglutide group than in the placebo group (268 of 4668 patients vs. 337 of 4672; hazard ratio, 0.78; 95% confidence interval [CI], 0.67 to 0.92; P=0.003). This result was driven primarily by the new onset of persistent macroalbuminuria, which occurred in fewer participants in the liraglutide group than in the placebo group (161 vs. 215 patients; hazard ratio, 0.74; 95% CI, 0.60 to 0.91; P=0.004). The rates of renal adverse events were similar in the liraglutide group and the placebo group (15.1 events and 16.5 events per 1000 patient-years), including the rate of acute kidney injury (7.1 and 6.2 events per 1000 patient-years, respectively).

CONCLUSIONS

This prespecified secondary analysis shows that, when added to usual care, liraglutide resulted in lower rates of the development and progression of diabetic kidney disease than placebo. (Funded by Novo Nordisk and the National Institutes of Health; LEADER ClinicalTrials.gov number, NCT01179048.)

Reference: N Engl J Med 2017; 377:839-848 August 31, 2017

Cost-Effectiveness of Intensive versus Standard Blood-Pressure Control

BACKGROUND

In the Systolic Blood Pressure Intervention Trial (SPRINT), adults at high risk for cardiovascular disease who received intensive systolic blood-pressure control (target, <120 mm Hg) had significantly lower rates of death and cardiovascular disease events than did those who received standard control (target, <140 mm Hg). On the basis of these data, we wanted to determine the lifetime health benefits and health care costs associated with intensive control versus standard control.

METHODS

We used a microsimulation model to apply SPRINT treatment effects and health care costs from national sources to a hypothetical cohort of SPRINT-eligible adults. The model projected lifetime costs of treatment and monitoring in patients with hypertension, cardiovascular disease events and subsequent treatment costs, treatment-related risks of serious adverse events and subsequent costs, and quality-adjusted life-years (QALYs) for intensive control versus standard control of systolic blood pressure.

RESULTS

We determined that the mean number of QALYs would be 0.27 higher among patients who received intensive control than among those who received standard control and would cost approximately $47,000 more per QALY gained if there were a reduction in adherence and treatment effects after 5 years; the cost would be approximately $28,000 more per QALY gained if the treatment effects persisted for the remaining lifetime of the patient. Most simulation results indicated that intensive treatment would be cost-effective (51 to 79% below the willingness-to-pay threshold of $50,000 per QALY and 76 to 93% below the threshold of $100,000 per QALY), regardless of whether treatment effects were reduced after 5 years or persisted for the remaining lifetime.

CONCLUSIONS

In this simulation study, intensive systolic blood-pressure control prevented cardiovascular disease events and prolonged life and did so at levels below common willingness-to-pay thresholds per QALY, regardless of whether benefits were reduced after 5 years or persisted for the patient’s remaining lifetime. (Funded by the National Heart, Lung, and Blood Institute and others; SPRINT ClinicalTrials.gov number, NCT01206062.)

Reference: N Engl J Med 2017; 377:745-755 August 24, 2017

Effect of Intensive Blood-Pressure Treatment on Patient-Reported Outcomes

BACKGROUND

The previously published results of the Systolic Blood Pressure Intervention Trial showed that among participants with hypertension and an increased cardiovascular risk, but without diabetes, the rates of cardiovascular events were lower among those who were assigned to a target systolic blood pressure of less than 120 mm Hg (intensive treatment) than among those who were assigned to a target of less than 140 mm Hg (standard treatment). Whether such intensive treatment affected patient-reported outcomes was uncertain; those results from the trial are reported here.

METHODS

We randomly assigned 9361 participants with hypertension to a systolic blood-pressure target of less than 120 mm Hg or a target of less than 140 mm Hg. Patient-reported outcome measures included the scores on the Physical Component Summary (PCS) and Mental Component Summary (MCS) of the Veterans RAND 12-Item Health Survey, the Patient Health Questionnaire 9-item depression scale (PHQ-9), patient-reported satisfaction with their blood-pressure care and blood-pressure medications, and adherence to blood-pressure medications. We compared the scores in the intensive-treatment group with those in the standard-treatment group among all participants and among participants stratified according to physical and cognitive function.

RESULTS

Participants who received intensive treatment received an average of one additional antihypertensive medication, and the systolic blood pressure was 14.8 mm Hg (95% confidence interval, 14.3 to 15.4) lower in the group that received intensive treatment than in the group that received standard treatment. Mean PCS, MCS, and PHQ-9 scores were relatively stable over a median of 3 years of follow-up, with no significant differences between the two treatment groups. No significant differences between the treatment groups were noted when participants were stratified according to baseline measures of physical or cognitive function. Satisfaction with blood-pressure care was high in both treatment groups, and we found no significant difference in adherence to blood-pressure medications.

CONCLUSIONS

Patient-reported outcomes among participants who received intensive treatment, which targeted a systolic blood pressure of less than 120 mm Hg, were similar to those among participants who received standard treatment, including among participants with decreased physical or cognitive function. (Funded by the National Institutes of Health; SPRINT ClinicalTrials.gov number, NCT01206062.)

Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes

BACKGROUND

Degludec is an ultralong-acting, once-daily basal insulin that is approved for use in adults, adolescents, and children with diabetes. Previous open-label studies have shown lower day-to-day variability in the glucose-lowering effect and lower rates of hypoglycemia among patients who received degludec than among those who received basal insulin glargine. However, data are lacking on the cardiovascular safety of degludec.

METHODS

We randomly assigned 7637 patients with type 2 diabetes to receive either insulin degludec (3818 patients) or insulin glargine U100 (3819 patients) once daily between dinner and bedtime in a double-blind, treat-to-target, event-driven cardiovascular outcomes trial. The primary composite outcome in the time-to-event analysis was the first occurrence of an adjudicated major cardiovascular event (death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke) with a prespecified noninferiority margin of 1.3. Adjudicated severe hypoglycemia, as defined by the American Diabetes Association, was the prespecified, multiplicity-adjusted secondary outcome.

RESULTS

Of the patients who underwent randomization, 6509 (85.2%) had established cardiovascular disease, chronic kidney disease, or both. At baseline, the mean age was 65.0 years, the mean duration of diabetes was 16.4 years, and the mean (±SD) glycated hemoglobin level was 8.4±1.7%; 83.9% of the patients were receiving insulin. The primary outcome occurred in 325 patients (8.5%) in the degludec group and in 356 (9.3%) in the glargine group (hazard ratio, 0.91; 95% confidence interval, 0.78 to 1.06; P<0.001 for noninferiority). At 24 months, the mean glycated hemoglobin level was 7.5±1.2% in each group, whereas the mean fasting plasma glucose level was significantly lower in the degludec group than in the glargine group (128±56 vs. 136±57 mg per deciliter, P<0.001). Prespecified adjudicated severe hypoglycemia occurred in 187 patients (4.9%) in the degludec group and in 252 (6.6%) in the glargine group, for an absolute difference of 1.7 percentage points (rate ratio, 0.60; P<0.001 for superiority; odds ratio, 0.73; P<0.001 for superiority). Rates of adverse events did not differ between the two groups.

CONCLUSIONS

Among patients with type 2 diabetes at high risk for cardiovascular events, degludec was noninferior to glargine with respect to the incidence of major cardiovascular events. (Funded by Novo Nordisk and others; DEVOTE ClinicalTrials.gov number, NCT01959529.)

Reference: N Engl J Med 2017; 377:723-732 August 24, 2017